Department of Mathematics
Temple University

COMPARISONS AMONG ESTIMATORS OF A SCALE PARAMETER OF THE BETA-STACY DISTRIBUTION

by N. L. Johnson *, University of North Carolina at Chapel Hill and Samuel Kotz**, Temple University, Philadelphia

April, 1970

NATIONAL TECHNICAL INFORMATION SERVICE Springfield, Va 22151

^{*} Supported by Air Force Office of Scientific Research under AFOSR-68-1415.

^{**} Supported by Air Force O. fice of Scientific Research under contact AFOSR-68-1411.

	• "		•			
Security Classification	···					
	NTROL DATA - R		averall cancer in alexacticate			
1. ORIGINATING ACTIVITY (Corporate author) Temple University	ing simotation must be e	20. REPORT SECURITY CLASSIFICATION UNCLASSIFIED				
Department of Mathematics Philadelphia, Pennsylvania 19122		26. GROUP				
3. REPORT TITLE COMPARISONS AMONG ESTIMATORS OF A SCAI	LE FARAMETER OF	THE BETA	-STACY DISTRIBUTION			
4. DESCRIPTIVE NOTES (Type of report and inclusive detea) Scientific Interim						
5. AUTHORIS: (First name, middle initial, last name) N. L. Johnson and Samuel Kotz						
6. REPORT DATE	7a. TOTAL NO. OF	PAGES	76. NO. OF REFS			
April 197 &	12		0			
80. CONTRACT OR GRANT NO.	9a. ORIGINATOR'S	REPORT NUM	BER(S)			
AFOSR-68-1411		•				
9769						
c. 6 72k	this report)		ther numbers that may be as signed			
04د	AFOS	B jk	79-0796			
Approved for public release; distribut	ion unlimited.					
11. SUPPLEMENTARY NOTES	12. SPONSORING	MILITARY ACTI	VITY			
	The state of the s	Air Force Office of Scientific Research (NM)				
TECH, OTHER	4	Arlington, Virginia 22209				
A comparative survey is made of se						
the Beta-Stacy distribution. In esse permit more insight into the statistic variables when one set has a generalize	ence, some opti es cf a joint d	mum techni istributio	lque is sought to on of two random			
made on the accuracy lost when no addi set having the generalized gamma distr of the bivariate warning-time/failure Mihran and Hultquist (1967),	cional statisc tibution. This	ics are av	vailable on the a logical extension			

The state of the state of

Comparisons among Estimators of a Scale

Parameter of the Beta-Stacy Distribution

By N.L. Johnson*, University of North Carolina at Chapel Hill and S. Kotz**, Temple University, Philadelphia

The Beta-Stacy distribution, as defined by Mihram and Hultquist [1] is the joint distribution of two random variables, X_1 and X_2 , when (i) X_1 has a Stacy (generalized gamma) distribution with density function

(1)
$$(x_1) = [r(\alpha)]^{-1} ca^{-\alpha c} x_1^{\alpha c-1} exp[-(x_1/a)^c]$$

and

(ii) the conditional distribution of X_2 , given X_1 , is beta with parameters θ_1, θ_2 and range 0 to X_1 , so that

(2)
$$P_{X_1|X_2}(x_1|x_2) = [B(\theta_1,\theta_2)]^{-1}(x_2/x_1)^{\theta_1-1}(1-x_2/x_1)^{\theta_2-1}x_1^{-1}$$

$$(0 < x_2 < x_1; \theta_1, \theta_2 > 0).$$

^{*} Supported by Air Force Office of Scientific Research under contract AFOSR-68-1415.

^{**} Supported by Air Force Office of Scientific Research under contract Af08k-68-1411.

Given n independent pairs of random variables { X_{1j} , X_{2j} }, (j = 1,2,...,n), each having the Beta-Stacy distribution is define It is clear that, given { X_{1j} }, the observations { X_{2j} } on the second variable { X_{2j} } provide no further information on the values of the parameters a,c and α of the common distribution of the X_{1j} 's .

In particular, if c and α are known then $\sum\limits_{j=1}^n X_{j}^c$ is a sufficient statistics for a, and the minimum variance unbiased estimator of a is

(3)
$$\hat{a} = \frac{\Gamma(n\alpha)}{\Gamma(n\alpha + c^{-1})} (\sum_{j=1}^{n} X_{j}^{c})^{1/c}$$

Its variance is

(4)
$$\operatorname{var}(\hat{a}_1) = a^2 \left\{ \frac{I(n\alpha)\Gamma(n\alpha + 2c^{-1})}{[I(n\alpha + c^{-1})]^2} - 1 \right\}$$

while the Cramér-Rao lower bound for unbiased estimators of a is

(5)
$$a^2(n\alpha c^2)^{-1}$$

The ratio of $var(\hat{a_1})$ to $a^2(n\alpha c^2)^{-1}$ tends to 1 as n tends to infinity.

Mihram and Hultquist [1] studied the problem of estimating \underline{a} when observations are available on $\{X_2\}$, but not on $\{X_1\}$, it being supposed that θ_1 and θ_2 are known, as well as c and α .

being supposed that θ_1 and θ_2 are known, as well as c and c. They suggested two estimators, based on the geometric and arithmetic mean of the X_{2j} 's, respectively:

(6.1)
$$\hat{a}_2 = \left[\frac{\Gamma(\theta_1) \Gamma(\alpha) \Gamma(\theta_1 + \theta_2 + n^{-1})}{\Gamma(\theta_1 + n^{-1})\Gamma(\alpha + (nc)^{-1}\Gamma(\theta_1 + \theta_2))} \right]^n \prod_{j=1}^n x_{2j}^{1/n}$$

(6.2)
$$\hat{a}_3 = \frac{(\theta_1 + \theta_2) \Gamma(\alpha)}{\theta_1 \Gamma(\alpha + c^{-1})} \cdot \frac{1}{n} \quad \sum_{j=1}^n X_{2j}$$

Since
$$E[X_2^S | X_1] = X_1^S = \frac{\Gamma(\theta_1 + s)\Gamma(\theta_1 + \theta_2)}{\Gamma(\theta_1 + \theta_2 + s)\Gamma(\theta_1)}$$

and
$$E[X_1^t] = a^t \Gamma(\alpha + sc^{-1})/\Gamma(\alpha)$$

it follows that

(7)
$$E[X_1^{\dagger}X_2^{\dagger}] = a^{S+t} \frac{\Gamma(\alpha + (s+t)c^{-1})}{\Gamma(\alpha)} \cdot \frac{\Gamma(\theta_1^{\dagger}+s)\Gamma(\theta_1^{\dagger}+\theta_2^{\dagger})}{\Gamma(\theta_1^{\dagger}+\theta_2^{\dagger}+s)\Gamma(\theta_1^{\dagger})}$$

From (7) we obtain

(8.1)
$$\operatorname{var}(\hat{a}_{2}) = \bar{a}^{2} \left\{ \left[\frac{\Gamma(\alpha) \Gamma(\theta_{1})\Gamma(\alpha+2(nc)^{-1})\Gamma(\theta_{1}+2n^{-1})}{\Gamma(\theta_{1}+\theta_{2})\Gamma(\theta_{1}+\theta_{2}+2n^{-1})} \left\{ \Gamma(\theta_{1}+\theta_{2}+2n^{-1}) \left\{ \Gamma(\alpha+(nc)^{-1})\Gamma(\theta_{1}+n^{-1}) \right\}^{2} \right] - 1 \right\},$$

(8.2)
$$\operatorname{var}(\hat{a}_3) = a^2 n^{-1} \left\{ \frac{(\theta_1 + 1)(\theta_1 + \theta_2)}{\theta_1 + \theta_2 + 1} \cdot \frac{\Gamma(\alpha + 2c^{-1})\Gamma(\alpha)}{[\Gamma(\alpha + c^{-1})]^2} - 1 \right\}$$

(8.3)
$$\operatorname{Cov}(\hat{a}_{2}, \hat{a}_{3}) = a^{2} \left\{ \frac{1 + (n\theta_{1})^{-1}}{1 + [n(\theta_{1} + \theta_{2})]^{-1}} \cdot \frac{\Gamma(\alpha) \Gamma(\alpha + (n+1)(nc)^{-1})}{\Gamma(\alpha + c^{-1}) \Gamma(\alpha + (nc)^{-1})} - 1 \right\}$$

(Formulae (8.1) and (8.3) disagree with the corresponding formulae in [1]).

As n tends to infinity, we have

(9.1)
$$a^{-2} \lim_{n \to \infty} n \operatorname{var}(a_2) = c^{-2} \psi(\alpha) + \psi'(\theta_1) - \psi'(\theta_1 + \theta_2)$$

$$(9.3) \quad a^{-2} \lim_{n \to \infty} \quad \cos(\hat{a}_{2}, \hat{a}_{3}) = c^{-1} [\psi(\alpha + c^{-1}) - \psi(\alpha)] + \theta_{2} \theta_{1}^{-1} (\theta_{1} + \theta_{2})^{-1},$$

where
$$\psi(y) = \frac{d}{dy} (\log \Gamma(y))$$
 and $\psi'(y) = \frac{d}{dy} (\psi(y))$.

And, of course, for all n

(9.2)
$$a^{-2} n \text{ var } (a_3) = \frac{(\theta_1 + 1)(\theta_1 + \theta_2)}{\theta_1(\theta_1 + \theta_2 + 1)} \cdot \frac{\Gamma(\alpha + 2c^{-1})\Gamma(\alpha)}{\{\Gamma(\alpha + c^{-1})\}^2} - 1$$

Table 1 gives val us of:

 a^{-2} n $var(\hat{a}_2)$, a^{-2} n $var(\hat{a}_3)$, and $corr(\hat{a}_2,\hat{a}_3)$ for selected values of $c,\alpha,\theta_1,\theta_2$ and n. The values for $n=\infty$ are calculated from the right hand sides of (9.1) – (9.3). For each set of values of c,α,θ_1 and θ_2 , n is taken equal to 100. In a few cases values are given also for n=10, 20, 50 and ∞ . These should suffice to indicate the variation with n, which is not marked.

In order to see how much accuracy has been lost by ignorance of $\{X_{j}\}$ the values of a^{-2} n var (\hat{a}_{j}) (j=1,2) can be compared with

the corresponding value

$$a^{-2} \text{ n var } (\hat{a}_1) = n \left\{ \frac{r(n\alpha)r(n\alpha+2c^{-1})}{[r(n\alpha+c^{-1})]^2} - 1 \right\}$$

for the minimum variance unbiased estimator $\hat{a_1}$. These values are given in Table 2.

Using the approximation $\psi(\alpha) \doteq \log(\alpha - \frac{1}{2})$ we see, from (9...1), that

(10)
$$a^{-2} \lim_{n \to \infty} n \operatorname{var}(\hat{a}_2) = c^{-2}(\alpha - \frac{1}{2})^{-1} + \psi'(\theta_1) - \psi'(\theta_1 + \theta_2)$$

while

(11)
$$a^{-2} \lim_{\Omega \to \infty} n \operatorname{var}(\hat{a}_1) = c^{-2}\alpha^{-1}$$
.

The excess of $var(\hat{a}_1)$ over $var(\hat{a}_1)$ can be split into parts:

$$c^{-2} \{\psi(\alpha) - \alpha^{-1}\} = \frac{1}{2} c^{-2} \alpha^{-1} (\alpha - \frac{1}{2})^{-1}$$

and
$$\psi'(\theta_1) - \psi'(\theta_1 + \theta_2)$$

The excess decreases as a increases and as a increases; the excess due to θ_1 and θ_2 is relatively less important when a and a are small. These features can be seen from the figures in Table 1.

Comparison of Tables 1 and 2 shows that the variables $\{X_2\}$ often provide unbiased estimators of \underline{c} which are of comparable accuracy (e.g. with variances no more than twice as great) to \hat{a}_1 . This is especially notable for the larger value of θ_1 and θ_2 mother feature which is indicated by (10) and (11). Except in 3 cases (but of 60) in Table 1, the estimator \hat{a}_2 (based on the arrithmetic mean) has a smaller variance than \hat{a}_3 (based on the geometric mean). For the smaller values of c and c, the correlation between \hat{a}_2 and \hat{a}_3 is small enough to give some hope that the unbiased estimator

$$\hat{a}_4 = A\hat{a}_2 + (1-A)\hat{a}_3$$

with A chosen to minimize $\text{var}(\hat{a}_{ij})$, suggested in [1], will give a useful reduction in variance. The last two columns of Table 1 give values of A and $\text{var}(\hat{a}_{ij})$. The reduction in variance is certainly worthwhile for c = 0.5, but for c = 1.0 and 2.0 is does not seem to be of much importance. Note that as c increases the value of A becomes negative.

If θ_1 and θ_2 are large, with θ_1 large compared with θ_2 , then X_{1j} and X_{2j} are highly correlated, and $\theta_1^{-1}(\theta_1+\theta_2)X_{2j}$ is a good unbiased estimator of X_{1j} . It would seem likely, therefore (in view of (3)) that

(12)
$$\hat{\mathbf{a}}_{1}' = (\theta_{1} + \theta_{2}) r(n\alpha) [\theta_{1} r(n\alpha + c^{-1})]^{-1} (\sum_{j=1}^{n} x_{2j}^{c})^{1/c}$$

would be a good (though not unbiased) estimator of \underline{a} , in such cases. We note that the statistic

(13)
$$\frac{\Gamma(\theta_1+\theta_2+c) \Gamma(\theta_1)}{\Gamma(\theta_1+c) \Gamma(\theta_1+\theta_2)} \cdot \frac{1}{n \alpha} \int_{j=1}^{n} X_{2j}^{c}$$

is an unbiased estimator of a^C with (coefficient of variation) equal to

(14)
$$n^{-1} \left\{ \frac{\alpha+1}{\alpha} \cdot \frac{\Gamma(\theta_1+2c)\Gamma(\theta_2)}{\left[\Gamma(\theta_1+c)\right]^2} \cdot \frac{\left[\Gamma(\theta_1+\theta_2+c)\right]^2}{\Gamma(\theta_1+\theta_2+2c)\Gamma(\theta_1+\theta_2)} - 1 \right\}.$$

For the minimum variance unbiased estimator of a,

$$(n\alpha)^{-1}$$
 $\stackrel{n}{\underset{j=1}{\sum}}$ x_{lj}^{c}

the (coefficient of variation)² is $(n\alpha)^{-1}$. On comparison with (14), we see that when $\alpha = 1$, the efficiency of (13), as an estimator of α^{C} , is

$$[1 + \frac{\theta_1(1+\alpha)}{\theta_1(\theta_1+\theta_2+1)}]^{-1}$$

Table 1 is based on tables to 5 significant figures for $c = 0.5, 1.0, 2.0; \alpha = 0.5, 1.0, 2.0, 3.0$ θ_1 , $\theta_2 = 0.5, 1.0, 2.0, 5.0; n = 10, 20, 50, 100, <math>\infty$

calculated with an APL program devised by Mr. J. O. Kitchen, to whom we express our gratitude. Thanks are also due to Mrs. G. Ballard for assistance with the preparation of this paper.

REFERENCE

 Mihram, G. A. and Hultquist, R. A. (1967) A bivariate warning-time/ failure time distribution, J. Amer. Statist. Assoc., vol. 62, pp. 589 - 599.

a^2 n var (\hat{a}_{μ})	13.9 13.4 13.1	10.7 10.7 10.1.5 10.1.5 10.1.0 10.0 10.0	
«	0.29 0.32 0.35	0.42 0.32 0.30 0.40 0.45 0.27 0.29	0.29 0.29 0.29 0.44 0.44 0.44 0.44 0.44 0.44 0.44
$corr(\hat{a}_2, \hat{a}_3)$	0.33 0.32 0.32 0.32	0.30 0.35 0.33 0.35 0.36 0.35 0.35	0.53 0.57 0.55 0.55 0.65 0.68 0.67
a ⁻² n var(â ₃)	16.5	20.0 13.0 14.6 16.5 12.1 13.0 11.0	4.0 3.0 3.0 4.0 4.0 5.7 5.7 5.7
$^{-2}$ n var($^{4}_{2}$) a	30.3 27.7 25.2 24.2	23.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0	2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.
с ,ч	10 20 50 100	100 20 100 100 100	8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
9	0.5	1012148148	0.010.10.10.10.10.10.10.10.10.10.10.10.1
မ <u>ှ</u>	0.5 0.5	. 000000000000000000000000000000000000	2.0 0.5 1.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2
O	5 0		

			•			
	$=\frac{-2}{n} \operatorname{var}(\hat{a}_{\mu})$					
	2-2 n	3.47 3.46 3.46 3.46	4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2.26 2.26 2.26 2.26 2.26 2.26	1.22	0.30 0.30 0.30 0.63 0.63 0.63 0.63
	₹	0.08 0.09 0.09	0.16 0.13 0.13 0.10	0.00	-0.12 -0.12 -0.12	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
	$corr(\hat{a}_{2,a_3})$	0.58 0.58 0.58	0.53 0.59 0.58 0.62	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.72 0.70 0.68 0.68	0.96 0.76 0.73 0.87 0.87 0.87
				• • • • • • • • • • • • • • • • • • •		
₹c •	a-2n ver(a3)	3.50	4.40 3.00 3.50 2.375	2.09	1.25	0.000000000000000000000000000000000000
מורדוותכתו.	a ⁻² n var(â ₂)	.23 .26 .25	5.50 5.92 5.18 5.15 5.25	16.58.69. 16.69.69.69.69.69.69.69.69.69.69.69.69.69	8 8 8 8	4.59 1.34 0.83 0.89 0.75 0.75 0.76
2	់៧	க்க்க்க்	<u> </u>	் குக்குக்கு	ต ์ ต่ ต่ ต่	# # # # # # # # # # # # # # # # # # # #
	e E	100 100	001	18888	98898	193 100 100 100
	8	0.5	0.000000	5.00	3.5	0.0000000
	_Ф Г	0.5	2200000		o.s	0.000000000000000000000000000000000000
	ಶ	0.5			2.0	
	, O	1.0			1.0	Δ.

Table 2: MINIMUM VARIANCE OF UNBIA ED ESTIMATOR OF a $(V = a^2n \text{ var}(\hat{a}_1))$

1							
	Λ	(0.126	0.125	0.125	0.125	(0.125	
Total de la constante de la co	ಶ	·		2.0			
2.0	۸	15 0 /	0.50	0.50	0.50	0.50	
	ಶ		,	0.5			
***	٨	0.50	0.50	0.50	0.50	05.0	
	B			2.0	**************************************		
1.0	۸	(2.00	2.00	2.00	2.00	(2.00	
	ಶ			0.5			
	۸×	(2.05	2.02	2.01	2.00	/2.00	
5	ಶ			2.0 <			
0.5	>	(8.67	8.36	8.15	8.08	\8.00	
	ಶ			0.5		:	
u U	E	92	20	<u> </u>	100	8	